Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
J Phys Chem Lett ; 13(31): 7105-7112, 2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-35900333

RESUMO

Quantum dynamical simulations are essential for a molecular-level understanding of light-induced processes in optoelectronic materials, but they tend to be computationally demanding. We introduce an efficient mixed quantum-classical nonadiabatic molecular dynamics method termed eXcitonic state-based Surface Hopping (X-SH), which propagates the electronic Schrödinger equation in the space of local excitonic and charge-transfer electronic states, coupled to the thermal motion of the nuclear degrees of freedom. The method is applied to exciton decay in a 1D model of a fullerene-oligothiophene junction, and the results are compared to the ones from a fully quantum dynamical treatment at the level of the Multilayer Multiconfigurational Time-Dependent Hartree (ML-MCTDH) approach. Both methods predict that charge-separated states are formed on the 10-100 fs time scale via multiple "hot-exciton dissociation" pathways. The results demonstrate that X-SH is a promising tool advancing the simulation of photoexcited processes from the molecular to the true nanomaterials scale.

3.
Nat Commun ; 13(1): 2755, 2022 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589694

RESUMO

Designing molecular materials with very large exciton diffusion lengths would remove some of the intrinsic limitations of present-day organic optoelectronic devices. Yet, the nature of excitons in these materials is still not sufficiently well understood. Here we present Frenkel exciton surface hopping, an efficient method to propagate excitons through truly nano-scale materials by solving the time-dependent Schrödinger equation coupled to nuclear motion. We find a clear correlation between diffusion constant and quantum delocalization of the exciton. In materials featuring some of the highest diffusion lengths to date, e.g. the non-fullerene acceptor Y6, the exciton propagates via a transient delocalization mechanism, reminiscent to what was recently proposed for charge transport. Yet, the extent of delocalization is rather modest, even in Y6, and found to be limited by the relatively large exciton reorganization energy. On this basis we chart out a path for rationally improving exciton transport in organic optoelectronic materials.

4.
Phys Chem Chem Phys ; 21(21): 10870-10878, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31106323

RESUMO

A predictive theory connecting atomic structure to the rate of recombination would enable the rational design of semiconductor nanomaterials for optoelectronic applications. Recently our group has demonstrated that the theoretical study of conical intersections can serve this purpose. Here we review recent work in this area, focusing on the thesis that low-energy conical intersections in nanomaterials share a common feature: locality. We define a conical intersection as local if (a) the intersecting states differ by the excitation of an electron between spatially local orbitals, and (b) the intersection is accessed when the energies of these orbitals are tuned by local distortions of the geometry. After illustrating the locality of the conical intersection responsible for recombination at dangling bond defects in silicon, we demonstrate the locality of low-energy conical intersections in cases where locality may be a surprise. First, we demonstrate the locality of low-energy self-trapped conical intersections in a pristine silicon nanocrystal, which has no defects that one would expect to serve as the center of a local intersection. Second, we demonstrate that the lowest energy intersection in a silicon system with two neighboring dangling bond defects localizes to a single defect site. We discuss the profound implications of locality for predicting the rate of recombination and suggest that the locality of intersections could be exploited in the experimental study of recombination, where spectroscopic studies of molecular models of defects could provide new insights.

5.
Annu Rev Phys Chem ; 70: 21-43, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30633637

RESUMO

The ability to predict and describe nonradiative processes in molecules via the identification and characterization of conical intersections is one of the greatest recent successes of theoretical chemistry. Only recently, however, has this concept been extended to materials science, where nonradiative recombination limits the efficiencies of materials for various optoelectronic applications. In this review, we present recent advances in the theoretical study of conical intersections in semiconductor nanomaterials. After briefly introducing conical intersections, we argue that specific defects in materials can induce conical intersections between the ground and first excited electronic states, thus introducing pathways for nonradiative recombination. We present recent developments in theoretical methods, computational tools, and chemical intuition for the prediction of such defect-induced conical intersections. Through examples in various nanomaterials, we illustrate the significance of conical intersections for nanoscience. We also discuss challenges facing research in this area and opportunities for progress.

6.
Sci Rep ; 8(1): 16359, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397272

RESUMO

Visibly transparent luminescent solar concentrators (TLSC) have the potential to turn existing infrastructures into net-zero-energy buildings. However, the reabsorption loss currently limits the device performance and scalability. This loss is typically defined by the Stokes shift between the absorption and emission spectra of luminophores. In this work, the Stokes shifts (SS) of near-infrared selective-harvesting cyanines are altered by substitution of the central methine carbon with dialkylamines. We demonstrate varying SS with values over 80 nm and ideal infrared-visible absorption cutoffs. The corresponding TLSC with such modification shows a power conversion efficiency (PCE) of 0.4% for a >25 cm2 device area with excellent visible transparency >80% and up to 0.6% PCE over smaller areas. However, experiments and simulations show that it is not the Stokes shift that is critical, but the total degree of overlap that depends on the shape of the absorption tails. We show with a series of SS-modulated cyanine dyes that the SS is not necessarily correlated to improvements in performance or scalability. Accordingly, we define a new parameter, the overlap integral, to sensitively correlate reabsorption losses in any LSC. In deriving this parameter, new approaches to improve the scalability and performance are discussed to fully optimize TLSC designs to enhance commercialization efforts.

7.
J Chem Theory Comput ; 14(8): 4129-4138, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-29986143

RESUMO

Time-dependent electronic structure methods are growing in popularity as tools for modeling ultrafast and/or nonlinear processes, for computing spectra, and as the electronic structure component of mean-field molecular dynamics simulations. Time-dependent configuration interaction (TD-CI) offers several advantages over the widely used real-time time-dependent density functional theory: namely, that it correctly models Rabi oscillations; it offers a spin-pure description of open-shell systems; and a hierarchy of TD-CI methods can be defined that systematically approach the exact solution of the time-dependent Schrodinger equation (TDSE). In this work, we present a novel TD-CI approach that extends TD-CI to large complete active-space configuration expansions. Such extension is enabled by use of a direct configuration interaction approach that eliminates the need to explicitly build, store, or diagonalize the Hamiltonian matrix. Graphics processing unit (GPU) acceleration enables fast solution of the TDSE even for large active spaces-up to 12 electrons in 12 orbitals (853776 determinants) in this work. A symplectic split operator propagator yields long-time norm conservation. We demonstrate the applicability of our approach by computing the response of a large molecule with a strongly correlated ground state, decacene (C42H24), to various pulses (δ-function, transform limited, chirped). Our simulations predict that chirped pulses can be used to induce dipole-forbidden transitions. Simulations of decacene using the 6-31G(d) basis set and a 12 electrons/12 orbitals active space took 20.1 h to propagate for 100 fs with a 1 attosecond time step on a single NVIDIA K40 GPU. Convergence with respect to time step is found to depend on the property being computed and the chosen active space.

8.
Chem Sci ; 9(3): 681-687, 2018 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-29629136

RESUMO

Conical intersections are well known to introduce nonradiative decay pathways in molecules, but have only recently been implicated in nonradiative recombination processes in materials. Here we apply excited state ab initio molecular dynamics simulations based on a multireference description of the electronic structure to defective silicon nanocrystals up to 1.7 nm in diameter to search for accessible nonradiative recombination pathways. Dangling bond defects are found to induce conical intersections between the ground and first excited electronic states of five systems of various sizes. These defect-induced conical intersections are accessible at energies that are in the visible range (2.4-2.7 eV) and very weakly dependent on particle size. The dynamic simulations suggest that these intersections are accessed 40-60 fs after creation of a defect-localized excitation. This ultrafast recombination is attributed to the fact that Jahn-Teller distortion on the first excited state drives the defect directly towards a conical intersection with the ground electronic state.

9.
J Phys Chem Lett ; 8(17): 4091-4099, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28799771

RESUMO

Defects are known to introduce pathways for the nonradiative recombination of electronic excitations in semiconductors, but implicating a specific defect as a nonradiative center remains challenging for both experiment and theory. In this Perspective, we present recent progress toward this goal involving the identification and characterization of defect-induced conical intersections (DICIs), points of degeneracy between the ground and first excited electronic states of semiconductor materials that arise from the deformation of specific defects. Analysis of DICIs does not require the assumption of weak correlation between the electron and hole nor of stationary nuclei. It is demonstrated that in some cases an energetically accessible DICI is present even when no midgap state is predicted by single-particle theories (e.g., density functional theory). We review recent theoretical and computational developments that enable the location of DICIs in semiconductor nanomaterials and present insights into the photoluminescence of silicon nanocrystals gleaned from DICIs.

10.
Phys Chem Chem Phys ; 16(39): 21564-9, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25188860

RESUMO

We examine the performance of the asymptotically corrected model potential scheme on the two lowest singlet excitation energies of acenes with different numbers of linearly fused benzene rings (up to 5), employing both the real-time time-dependent density functional theory and the frequency-domain formulation of linear-response time-dependent density functional theory. The results are compared with the experimental data and those calculated using long-range corrected hybrid functionals and others. The long-range corrected hybrid scheme is shown to outperform the asymptotically corrected model potential scheme for charge-transfer-like excitations.

11.
Chemphyschem ; 14(3): 500-4, 2013 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-23386546

RESUMO

Molecular motion control systems such as bistable rotaxanes or molecular elevators are mostly designed with different binding sites. In this theoretical study, it is demonstrated that, with the use of a redox reaction center and its position effect, it is possible to build a motion control system with identical binding sites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...